
Cheatsheet - My Rails Testing Roadmap

When to TDD
1. If you're unsure how to implement something, first develop working code without tests.
Then throw this away, and restart development with TDD.
2. If you're changing the behavior of an existing feature, then TDD right away (assuming
the code has tests to begin with)
3. If the code doesn't have tests, then introduce test coverage before changing the code.
4. If you’re fixing a bug, write a test to prove the failure before going in and fixing it.

The Rails Testing Roadmap

Your Development Environment
Install & Setup simplecov
Set up a key command to quickly run the test you're working on

Acceptance Tests

Tests involving the browser are typically slow. At the same time, without acceptance tests,
you can't be 100% sure that all the pieces of your system work as expected. So a happy
medium is this:

Write an acceptance test for the "happy path"
Save testing the edge cases for the controller (or other objects) tests
Rely on CSS classes & ids for your test assertions. This ensures your tests don't have
to change too often. For example, favor something like `expect(page).to
have_css('#greeting')` over `expect(page).to have_content('hello')`
Use a headless browser

Controllers

At a minimum, here's what to test for in your controllers:

Check that the right view template is rendered
Check redirects
Ensure flash messages are set

https://github.com/colszowka/simplecov
https://github.com/teampoltergeist/poltergeist

Ensure instance variables are set as expected
If applicable (and simple enough to do so), check that emails are sent and/or the
database is updated

Ideally, I try to stay clear of putting business logic in my controllers. If my controller spec
has tests for more than the above, I start to consider extracting the relevant
functionality into service objects.

I also get two extra benefits with my controller tests:

1. The tests won't pass if the route is not defined.
2. By using render_views, I ensure that any view errors are caught.

Because of this, I don't write view and route tests.

Models

My model specs typically only contain tests for the following:

Columns (something like it { is_expected.to
have_db_column(:name).of_type(:string) })
Scopes
Validations
Associations
Delegations

If your spec contains tests for more than the above, you might want to consider if extracting
this functionality would make your code easier to deal with.

POROs and Other Custom Rails Objects

Most business logic in a decent sized Rails app will (or should) reside outside the MVC
structure. Subsequently, the lion's share of your tests will run on these objects:

Validators
Serializers
Workers
Helpers
Mailers
POROs (things like Form Objects, Value Objects etc)

https://www.relishapp.com/rspec/rspec-rails/docs/controller-specs/render-views
http://ducktypelabs.com/how-to-keep-your-controllers-thin-with-form-objects/

As far as you can, aim to isolate your tests for these objects from other parts of the system.
Though it won't always be possible because of the way Rails is designed, sustained effort in
this area is bound to pay off in more ways than one:

1. Your tests will run faster. This will make your development process more enjoyable.
2. Difficulty isolating an object under test (for example, with deeply nested stubs) can be

a sign that your object is doing too much, or knows too much about other objects in
the system. When this happens to me, I often reconsider my design and think of ways I
can reduce my object's responsibilities.

Javascript

Use Jasmine to write your javascript specs
The higher your test coverage, the more confidence you will have in changing your
code when the time comes to do so.

External Services

Stub external requests with VCR and WebMock
Caution: Keep an eye out for changes to the API

Test Speed: Rules of Thumb

Martin Fowler says:

...your test suites should run fast enough that you're not discouraged from running them
frequently enough. And frequently enough is so that when they detect a bug there's a
sufficiently small amount of work to look through that you can find it quickly.

According to Kent Beck: Your test suite as a whole should take no longer than 10 minutes
to run.

http://jasmine.github.io/
https://github.com/vcr/vcr

